Prime Minister’s Prizes for Science

Professor Graham Farquhar’s groundbreaking research in plant biophysics is leading to huge developments in understanding climate change.

Australian scientists and science educators have been honoured at the annual Prime Minister’s Prizes for Science. The awards, introduced in 2000, are considered Australia’s most prestigious and highly regarded awards, and are given in recognition of excellence in scientific research, innovation and science teaching.

The awards acknowledge and pay tribute to the significant contributions that Australian scientists make to the economic and social betterment in Australia and around the world, as well as inspiring students to take an interest in science.

Previous winners include Professor Ryan Lister (Frank Fenner Prize for Life Scientist of the Year in 2014) for his work on gene regulation in agriculture and in the treatment of disease and mental health, and Debra Smith (Prime Minister’s Prize for Excellence in Science Teaching in Secondary Schools in 2010) for her outstanding contribution in redefining how science is taught in Queensland and across the rest of Australia.

This year’s winners were announced by the Prime Minister, Malcolm Turnbull and Christopher Pyne, Minister for Industry, Innovation and Science at a press conference at Parliament House in Canberra yesterday, which was also attended by the Chief Scientist, Professor Ian Chubb.

The 2015 recipients are:

This year’s winner of the Prime Minister’s Prize for Science is Professor Graham Farquhar, Distinguished Professor of the Australian National University’s (ANU) Research School of Biology , a Chief Investigator of the Australian Research Council’s (ARC) Centre of Excellence for Translational Photosynthesis, and leader of the Science and Industry Endowment Fundproject on Forests for the Future: making the most of a high [CO2] world.

Professor Farquhar’s models of plant biophysics has led to a greater understanding of cells, whole plants and forests, as well as the creation of new water-efficient wheat varieties. His work has transformed our understanding of the world’s most important biological reaction: photosynthesis.

Farquhar’s most recent research on climate change is seeking to determine which trees will grow faster in a carbon dioxide enriched atmosphere. “Carbon dioxide has a huge effect on plants. My current research involves trying to understand why some species and genotypes respond more to CO2 than others,” he says. And he and colleagues have uncovered a conundrum: global evaporation rates and wind speeds over the land are slowing, which is contrary to the predictions of most climate models. “Wind speed over the land has gone down 15% in the last 30 years, a finding that wasn’t predicted by general circulation models we use to form the basis of what climate should be like in the future,” he says. This startling discovery means that climate change may bring about a wetter world.

Professor Farquhar will also receive $250,000 in prize money. Looking forward he is committed to important projects, such as one with the ARC looking at the complex responses of plant hydraulics under very hot conditions.

“It’s important to understand if higher temperatures will negatively affect the plants in our natural and managed ecosystems, and if higher temperatures are damaging, we need to understand the nature of the damage and how we can minimise it.”

This article was first published by Refraction Media. Read the original article here